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njw Towards quantum utility

Efficiently

NISQy verifiable

In-principle quantum advantage

cf. Scott Aaronson
Kim, Y., Eddins, A., Anand, S. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500-505 (2023)
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nw NMR* is a very powerful tool

*Nuclear magnetic resonance

NMR is one of the most powerful methods providing atomic-level information of molecules. It can study molecules in solution,
mimicking their native behavior in organisms, or in solid state form.
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nw NMR is a very powerful tool

NMR is one of the most powerful methods providing atomic-level information of molecules. It can study molecules in solution,
mimicking their native behavior in organisms, or in solid state form. However, spectra can be challenging to interpret, especially for
large molecules & complex mixtures, with highly correlated, overlapping signals and solvent effects. It is a labor-intensive process that
done by highly-trained personnel. There is no fast and automated deciphering solution that requires no human intervention, thus

severely limiting the usefulness of NMR.
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NMR spectra are hard to interpret
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From spectroscopic data to molecular structure
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NMR spectra are hard to interpret
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NMR spectra are hard to interpret
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(Nuclear) spin dynamics simulation
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(Nuclear) spin dynamics simulation
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(Nuclear) spin dynamics simulation

N

A/ OXj_je,w
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- Interact with magnetic fields
- Interact with one another -
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(Nuclear) spin dynamics simulation
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nw

(Nuclear) spin dynamics simulation

- Nuclear spins are shielded from B
- Unique electronic structures serve as
“fingerprints” of molecules
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nw (Nuclear) spin dynamics simulation
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(Nuclear) spin dynamics simulation
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(Nuclear) spin dynamics simulation
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(Nuclear) spin dynamics simulation

Clusters

Small weakly coupled systems 3 _—
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nw (Nuclear) spin dynamics simulation

Reducing complexity to polynomial scaling (for
liquid state NMR).
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Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction (2007, Kuprov)
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Hard (Nuclear) spin dynamics simulation

Hard / classically intractable simulations:
For large clusters

Strong coupling
Weak field '
etc

u*tx"r ‘\s ‘)

©2024 Clément Javerzac-Galy, FHNW, Proprietary and confidential

19



Hard (Nuclear) spin dynamics simulation

e.g. low field NMR

Spectrum Spectrum
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Hard (Nuclear) spin dynamics simulation

From semi-classical to quantum mechanical treatment
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A native quantum problem

Simulating Physics with Computers
Richard P. Feynman
Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

He and I have had wonderful, intense, and interminable arguments, and my
argument is always that the real use of it would be with quantum mechanics,
and therefore full attention and acceptance of the quantum mechanical
phenomena—the challenge of explaining quantum mechanical phenomena
—has to be put into the argument, and therefore these phenomena havé to
be understood very well in analyzing the situation. And I'm not hanpy with
all the analyses that go with just the classical theory, becanse nature isn’t
classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy. Thank you.
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A native quantum problem

©2024 Clément Javerzac-Galy, FHNW, Proprietary and confidential

23



nw

A native quantum problem

Like electronic structures?

Fermions Spins
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A native quantum problem

Like electronic structures?

Smaller encoding
overhead
for nuclear problem
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A native quantum problem - Hamiltonian

Simulation.
N
HE = Zwklf + 27 Z T,
k= k<l
The nuclear problem: l
— iUt
[(8)) = e7 %7 [4(0))
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Ho, Hag = H2,2”‘ Complexity:
Hn = : . : . cannot be stored, but
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columns: 2™
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e.g. Adenosine triphosphate (ATP)

A 8 active spins system (1H NMR, liquid state)

Found in all known forms of life, it is often referred to as the "molecular unit of currency" of
intracellular energy transfer.
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njw e.g. Adenosine triphosphate (ATP)

Ex. of transpiled circuit:
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njw e.g. Adenosine triphosphate (ATP)

Rz (—4472n8)

Simple state =
preparation (A
(no density matrix here) -
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nw

e.g. Adenosine triphosphate (ATP)

A major milestone in system
performance:

Eagle R3

Mean T1 = 269 us
Mean ECR gate time =537 ns

~ 500 gates in T1 time

~N0
127-qubits chip IBM " QuantumBasel

Center of Competence
for Quantum and Artificial Intelligence
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njw e.g. Adenosine triphosphate (ATP)

Free Induction Decay (FID) on QPU: first time high-field

FID
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njw e.g. Adenosine triphosphate (ATP)

Free Induction Decay (FID) on QPU: first time high-field

FID Spectrum
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NW  e.g. benchmarked with experimental NMR data

Free Induction Decay (FID) on QPU: first time high-field

FID Spectrum
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nw Hamiltonian Simulation via product formula

a 06 Lie-Trotter b 06 Suzuki-Trotter
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nw Resource estimation
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nw

1000

Resource estimation
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Number of Gates

Resource estimation
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nw Resource estimation

NIS{2 quantum utility

Burov et al., https://doi.org/10.48550/arXiv.2404.17548 (2024)
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Catalysts
Batteries

New materials
Small drugs
Etc
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nw

Resource estimation

W.r.t. quantum roadmaps
(e.g. IBM, Quantinuum)
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Hybrid approach:

L

MatterDecoder: from spectroscopic data to molecular structure

(1’ @) —S] )UUUUUUM
UWijW_|

vVf

classical machine learning
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nuw MatterDecoder: from spectroscopic data to molecular structure

NMR spectrometer ) {7 al Quantum processor
- c g |
Chemical compound to . l“ . U
be elucidated (liquid, . @) —{s}- l r

powder, solid-state, etc)
Quantum circuit

exp { 7%m} ®

[0)) w

Nuclear spin dynamics
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Elucidated molecular
(catalyst, battery,
pharmaceuticals, etc)
structure; or dynamics,
interaction, etc.
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nuw MatterDecoder: from spectroscopic data to molecular structure

Towards automating NMR
Deciphering spectroscopic data on NISQ

Chemical compound to R
be elucidated (liquid, . quantum computers

powder, solid-state, etc)
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Elucidated molecular
(catalyst, battery,
pharmaceuticals, etc)
structure; or dynamics,
interaction, etc.
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MatterDecoder: from spectroscopic data to molecular structure

For other spin systems in sensing (NV-centers etc)

$ CREATIVE 2

.
[
e e DESTRUCTION a

To be made available through MatterDecoder (spin-off technology)

Applications in solid-state NMR, material development, pharmaceuticals,
sensing, etc

Radio pharmaceuticals, isotopes

Next generation of medical quantum sensors for healthcare
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University of Applied Sciences and Arts Northwestern Switzerland
School of Life Sciences

Artemiy Burov

Questions?
What can we solve together?

-> clement.javerzac@fhnw.ch

©2024 Clément Javerzac-Galy, FHNW, Proprietary and confidential

member of
swissuniversities

45


mailto:clement.javerzac@fhnw.ch

